
c S S A 

I 

CENTER FOR SPACE SCIENCE AND ASTROPHYSICS 
STANFORD UNIVERSITY 

Stanford, Calif urn ia 



t 

NONLINEAR FORCE-FREE MAGNETIC FIELDS : 

CALCULATION AND APPLICATION TO ASTROPHYSICS 

by 

'w'ei-Iiong Yang 

CSSA-ASTRO-87 - 11 
March 1987 

A Dissertation 
Submitted to the Department of Applied Physics 

and the Committee on Graduate Studies 
of Stanford University 

in Partial Fulfillment of the Requirements 
for the Degree of 

Doctor of Philosophy 



ABSTRACT 

l' 

b' 

The problem concerned in this work is that of calculating magnetic field 

configurations in which the Lorentz force I x B is everywhere zero, subject to 

spccified boundary conditions. We choose to represent the magnetic field in terms 

of CleLsch variables in the form B = VQ x Op. These variabies are constant on 

any field line. The most appropriate choice of boundary conditions is to specify 

the values of Q and p on the bounding surface. We image that the field lines 

move in the direction of local Lorentz force and relax towards a force-free field 

configuration. This concept leads to an iteration procedure for modifying the 

variables a and /3 that tends asymptotically towards the force-free state. We 

apply this method first to a simple problem in two rectangular dimensions; the 

calculation shows that the convergence of magnetic field energy to a minimum 

statc(force-free) is close to exponential. We then apply this method to study some 

astrophysical force-free magnetic fields, such as the structures and evolution of 

magnetic fields of rotating sunspots and accretion disks. The implication of the 

results, as rclatcd to the mechanisms of solar flares, extragalactic radio sources 

and radio jets, are discussed. 
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(- 1. INTRODUCTION 

c 

hhgnetic fields play a key role in solar activities, and probably also in 

similar phcnomena on other stars and in other astrophysical objects. En- 

ergetic bursts, such as solar flares, are widely believed to be a sudden re- 

lease of energy stored in magnetic form in the solar atmosphere. One of 

the ccntral problems in solar physics theory is to provide quantitative mod- 

-1, -I 11.- I. ----- Lf-- I - - - -  - 
WL bllc ~ L ~ L & C I U I I  OL 1Iia.gIietic siruciures from siow passive evoiution to 

fast active evolution leading to eruptive processes. Knowledge of the qui- 

escent structure of the magnetic field is obviously an indispensable prereq- 

uisite for any study of the dynamics of these fields. For magnetohydro- 

static cquilibrium, the total force acting on the plasma, which in general in- 

cludes the Lorentz force, the plasma-pressure gradient, a.nd the gravitational 

force, must vanish everywhere. The equilibrium condition must be fulfilled, 

1.e. 

-Vp i - l% + p i i =  0, (1.1) 

is the Lorentz force; p and p are plasma density and pressure, is the gravita- 

tionnl field. If the magnetic field is strong enough, or say, any pressure gr a d’ lent 

and gravitational force is dominated by the Lorentz force, the equilibrium con- 

figurat,ion of the magnetic field is determined mainly by the magnetic force. The 

cquililxiurn requires that the Lorentz force F, must everywhere be zero. h4ag- 

- 1 -  
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iictic fivltls satisfying this con& tion, 

or 

+ + 
(V x B )  x L? = 0, 

are callctl force-free. Generally force-free fields carry electrical currents, which 

align tliemselves along the magnetic field lines. 

A particular case of a force-free field when j’ = 0 everywhere is called current- 

free. Together with the Maxwell equation V - g  = 0, a current-free magnetic field 

yields 

V21? = 0, (1.5) 

or n7e may write 

2 = V$, 

where 7 b  is the scalar magnetic potential, which satisfies Laplace’s equation 

a+ A current-free magnetic field is also called a potential field. If B,  (= x) is 

prcscribcd on the boundary surface, the corresponding potential field contains 

the sxiiallest possible amount of magnetic energy. Thus magnetic fields with 

noli-zcro currents but the same B,, on the boundary must contain Inore energy 

than the potential field. We will discuss the energy theorem in more detail in 

Chapter 2. 

- 2 -  



We now assume that the gravitational term pij is negligible. According to 

equation (l.l), an equilibrium requires 

1 -  - 
- 3  x B = V p .  
C 

By substituting Ampere’s law 

f C  4 

3 = -(V x B) ,  47r 

equation (1.8) can be written as 

1 
4n 
-(V x Z) x 2 = v p .  

Therefore, we obtain 

(1.10) 

(1.11) 

where 23 denotes the angle between the current and the magnetic field. Within 

x i  order of magnitude, tile derivatives may be estimated approximately as 

v p  M L-lp, (1.12) 

10 x n’l M L-Q, (1.13) 

where L is a characteristic dimension of the system concerned. With these ap- 

proximations, w e  may derive a scaling relationship for equation (l.ll), i.e. 

1 
sin29 x ZP,  (1.14) 

whcre /3’ is the ratio of the plasma pressure to the magnetic pressure and is defined 

as 

c 
(1.15) 
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from which we know that 19 M 0, i.e. 3 is nearly parallel to I?, if /3 << 1. This 

approximation indicates that the condition for a magnetic field configuration to 

be force-free is that the ma.gnetic field energy density &B2 is much larger than 

the gas pressure nkT. 

Tlic parameter p may be rewritten as 

(1.16) 

For the solar corona, electron number density ne - l O ' ~ r n - ~ ,  temperature T - 
1061<", so \\-e expect the field to be approximately force-free if B 2 10 Gauss. 

hsfagnetic field is nearly in a force-free state for the high chromosphere of active 

regions where the magnetic field is strongly enhanced (Svestka, 1933). Magnetic 

fields may be taken to be force-free in the geomagnetosphere, and in many other 

astrophysical situations, for examples, the magnetospheres of active galactic nu- 

clei with accretion discs (Blandford, 1976; Buckeley, 1981)) and the extragalactic 

magnetized radio jets (Konigl and Choudhuri, 1985). 

The interest of studying the force-free magnetic field generally has two 

aspects. First, the equilibria of low-beta ( p << 1 ) cosmic plasma must 

be in force-free field configurations. As we know, the magnetohydrostatics 

is rclcvaiit to a variety of solar structures that appear to remain motion- 

less for long periods of tiIncs. It has been n.pplied, for esample, to the 

ovcrall striicture of sunspots and of prominences, and to the large scale of 

coronnl magnetic field, wliicli often appears stationary for times long com- 

pnrcd with the Alfvkn travel time. The physical appearances of the cos- 

- 4 -  



I .  

mic plasma clouds, observed over a wide range of wavelengths, ranging from 

radio waves, visual light to x-ray, or "/-ray, combined with knowledge of 

the magnetic field structures, may give us useful information about the ori- 

gins and the evolutions of the striking astrophysical objects, such as ex- 

tragalactic radio sources, including radio jets. The another important as- 

pect is that the force-free magnetic field is one of the most probable can- 

didate configuration for energy conversion and storage. As is well-known, 

free magnetic field energy could be created by distorting a potential field 

slowly to force-free states. Most of the current solar flare models (Svestka, 

19iG; Sturrock, 1980) suggest that this kind of free magnetic field energy 

may be stored in the force-free coronal magnetic field due to the motion 

of the photosphere. If the instability sets in and a fast reconnection of 

the magnetic fieid occurs, this free field energy may be released eruptively 

and produce solar flares. Similar processes may also happen in other astro- 

physical objects, for example, the field evolution on a magnetized accretion 

disk. 

Now we come to investigate theoretical solutions to the force-free field. The 

force-free field equation (1.3) can also be written as 

vxi i=xd,  (1.17) 

where X is some scalar function of position, which represents the ratio of the 

electric current to the field strength. By taking the divergence of equation (1.17) 

after using V. 5 = 0, the left-hand side vanishes, and the right-hand side reduces 

c -5- 



to 

(2. V)X = 0, (1.18) 

which means that the quantity X must be constant along each line of force. 

Let us assume that 21, 2 2  are solutions of equation (1.17), so that we may 

have 

(1.19) 

By substituting the sum of 21 and 2 2  into the left side of equation (1.4), we 

obtain 

[V x (21 + Z2)) x (Z1 + Z2) = (A, - A 2 ) ( 2 1  x 5 2 1 ,  (1.20) 

which vanishes when A1 = A2 everywhere. 

It is clear that the general problem represented by equation (1.3) or (1.17) 

is nonlinear. The sum of two separate solutions of those equations does not, in 

general, produce a third solution. However, if X takes the same value on every 

field line ( Le., X = constant everywhere), the curl of equation (1.17) reduces 

to 

(V2 + A2)d = 0, (1.21) 

4 

where we used the relation V x (V x 2) = V(V a n’) - V2B’ = -V2B e .  

Equation (1.21) is the well-known Helmholtz equation, which can be solved 

by standard methods. Obviously, we now have a linear equation form, while 

this category of force-free field is called the ‘constant-A’ or ‘constant-a’ (some- 

-6- 



c 

timcs tlie parameter is denotcd by a) force-free field, or linear force-free 

field. 

The basic force-free equation (1.3) or (1.17) has a disarmingly simple form, 

but it is difficult to find general solutions because of their nonlinearity. So, much 

effort has been made to solve the linear equation (l.lS), and the solutions have 

been obtained in various configurations. For example, by considering solutions 

to equation (1.21) which are required to satisfy '7.- B = 0, we may write these 
+ 

solutions in the form 

B' = av x ($a') + v x (V x (?)ti)), 

where a' is a fixed unit vector, and the scalar function satisfies 

(V2 + CY2)+ = 0. 

(1.22) 

(1.23) 

Chandrasekhar and Kendall (1957) obtained the general solution of equation 

(1.23) with a' = i; in spherical coordinates ( r ,  6,4) 

(1.24) 
n=O m=O 

in terms of Bessel functions (Jn) and associated Legendre functions ( P ~ ( c o s 6 ) ) ,  

which leads to force-free magnetic field solutions by substituting it into equa- 

tion (1.22). About other solutions to equation (1.23) one may refer to the 

works in rectangular coordinates by Nakagawa and Itaadu (1972), and in 

cylindrical coordinates by Priest (1982). An alternative prescription to equa- 

tion .(1.22) for axisymmetric solutions was obtained by Lust and Schluter 

(1954). 

-7- 



However, the intensive studies concerning the comparison between the ob- 

servation of solar magnetic field structure and the calculation performed on 

the constant-X model show that the assumed constancy of X is poorly satis- 

fied (Levine 1976). In many cases it can be found that the variation of the 

electric current 

tion that X is constant. 

with respect to r' is clearly incompatible with the assump- 

For example, suppose that we are trying to find 

the force-free field configuration produced by a finite source such as a pair of 

sunspots of opposite polarity. If we investigate the field at  a large distance 

from the source, we expect that the field strength has the form B = B ~ T - ~ .  

We find that this field will not be a linear force-free field, because in this 

case 

(1.25) 

which obviously contradicts the requirement that X = constant. Hence the as- 

sumption that X = constant, which reduces the nonlinear problem of (1.3) or 

(1.17) to the linear problem described by (1.21), is inappropriate for the in- 

vestigation o f  a wide range of interesting problems of solar physics and astro- 

physics. 

In the special case that the magnetic field configuration is independent 

of one of the spatial coordinates, it is possible to generate solutions of the 

nonlinear equation (1.4) by a special technique described by Priest (1982). 

For instance, consider a field configuration independent of y in rectangular 

Cartesian coordinates. The components of the field may be specified by the 



c 

form 

a A  , By, B,=-- dA B, = - az a x  ' (1 -26) 

which satisfies V . B' = 0 automatically. The components of equation (1.4) 

become 
aA a 1 

V 2 A -  + -( -B i )  = 0, ax ax 2 

aA a 1 

a B y d A  aB, aA 
a z  ax a x  az 

i3z d z ' 2  

0, 

V 2 A -  + - f  -Bi> = 0: 

--.---= (1.27) 

We find that By is a function of the flux function ( A )  alone and so it 

remains constant along a field line in the surface A = constant. If we 

writ e 

we ebtain f r ~ m  equation (1.27) 

@ A  @ A  d 1 - + - + - ( -F2(A))  = 0, ax! a2= d~ 2 (1.29) 

which is in general a nonlinear equation. For each specified function F(A) ,  this 

is a technique for generating a special set of solutions of the nonlinear equa- 

tion. The particular cases B,  = constant and By = con8tant x A give potential 

and constant-A fields, respectively. However, this procedure is inappropriate for 

solving tlie general problem, such as computing the force-free field that satisfies 

specified boundary conditions. 

The investigation of the general (A = A(?)) force-free magnetic field has al- 

ready been made in the two-dimensional case by Sturrock and Woodbury (1967), 

- 9 -  



and Barnes and Sturrock (1972) in the context of simulating the coronal mag- 

< 

netic field evolution and the flare-energy build-up; and further by Sakurai (1979). 

We will discuss their works in a special section 2.2, since all their works involved 

describing magnetic field in terms of the Clebsch variables. In another article, 

Sakurai (1981) has discussed another method for solving the force-free equation 

(1.17) with spatially varying A. If the distribution of the normal component of 

the magnetic field Bn is given on a bounding surface, and if X is specified as well 

either in the region of the surface where B n  is positive or in the region where 

B n  is negative, the magnetic field can be found by an iterative process. Starting 

from the potential field with the given B,,, the value of X is used to distribute 

currents along the field lines. The field is then recalculated, and the procedure 

repeated until the calculation converges. This method has an advantage, com- 

paring to his previous work (Sakurai, 1979), that one can specify not only the 

position of the endpoints but also the position of any intermediate point on a 

field line. 

The aim of this work is to develop a new practical and efficient method 

of computing the general force-free field, and then apply the method to prob- 

lems of interest in solar physics and astrophysics. The basic physics of force- 

free magnetic fields related to our work will be described briefly in Chap- 

ter 2. In Chapter 3, we will discuss the basic idea leading to the formu- 

lation of a new numerical scheme of computing force-free field, and describe 

the computational knowledge needed for the practical use of the method. A 

- 10 - 



test case of the method will be shown in Chapter 4. The applications to a 

rotational sunspot model and to accretion disk models will be discussed in 

Chapter 5 and Chapter 6, respectively. We discuss the future development 

I 

of the method and further application to physics problems in the h a 1  chap- 

ter. 

c - 11 - 
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2. BASIC PHYSICS OF FORCE-FREE FIELD 

2.1. Maanetic Force 

By using the vector identity 

we may rewrite equation (1.2) into the form 

1 B2 
47r 87r 

grn = -@ * V ) Z -  V(-). (2.2) 

This equation shows that the magnetic force is equivalent to a magnetic hydro- 

static pressure, 

plus a term which can be thought of as a tension along the lines of force. For 

a force-free configuration,. these two terms must cancel everywhere. For some 

simple gcometrical situations, such as the magnetic field B having only one com- 

ponent, the additional tension term vanishes. If the plasma system is in an 

equilibrium state, the magnetic hydrostatic pressure p ,  must be balanced by 

some 0 t h  pressure, therefore the field configuration will not be the force-free 

case. 

-0 

Equation (2.2) can be expressed in tensor form as 

- 12 - 
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With tlic tlcfinition of the Maxwell stress tensor Tik (Jackson, 1962) as 

equation (2.4) can be rewritten in component form as 

so that the magnetic force is the divergence of the Maxwell tensor T when the 

electric field terms are neglected. The force-free field configuration means 

V - T = O ,  (2.7) 

everywhere. 

We consider an arbitrary volume V .  The total force acting on V can be 

calculated by the integral (A1fvC.n and Falthammar, 1963) 

By using the vector identities 

and 

we ohtnin 

(2.10) 

(2.11) 

- 13 - 



4 where S is the surface of the volume V .  If we write dS = GdS, fi = Si, where 

f i  and 6 are the unit vectors of L? and 5, respectively (see Figure 1). We know 

that 

2 dS = I?(& 0 i i )dS = 13 cosedS, (2.12) 

where 0 is the angle between the magnetic field and the surface normal vector. 

So we can write the equation (2.11) as 

-3 B2 B2 Ftat = - dS + Z b c o s O  dS. (2.13) 

c 
Figure I. Illustration of the boundary situation for evaluating the 

total magnetic force. 
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The first term on the right-hand side of equation (2.13) represents a pressure 

of magnitude of 8* B' and . the second term represents a tension of magnitude 

directed along the lines of force. If 6 I 6 all over the boundary surface, then 

the second tension term vanishes, only the magnetic pressure on the boundary 

contributes to the total magnetic force Ftot. 

We now consider another volume integral (Chandrasekhar, 1961) 

7-  ((V x 3) x I?] dV = J.'" x g )  (Z x 3 dV. (2.14) 

With the aid of the identity 

a'. (V x C) dV = (V x Z) dV - (2.15) 

the integral (2.14) can be rewritten as 

(2.16) 

-. -4 

Consequently, if the force-free condition is satisfied, Le. (V x B )  x B = 0,  inside 

V ,  we have 

(2.17) 

The value of the left-hand side of this equation is always positive. To satisfy 

this condition, the magnetic field strength on the boundary surface S can not 

all vnnisli. This indicates a constraint that an unconfined force-free field with no 

c - 15 - 



boundary does not exist. All force-free fields must be confined by rigid boundaries 

or be anchored by magnetic field lines threading a boundary, the latter being the 

cases we are going to study in Chapter 5 (rotational sunspot model), and in 

Chapter 6 (accretion disk model), respectively. 

2.2. Clebsch Variables 

- 
The magnetic field is solenoidal, i.e. V B = 0, and therefore can be repre- 

sented by two scalars. One appropriate way of representing magnetic field is to 

introduce the Clebsch variables usually denoted by a and ,8, with the property 

(2.18) ~ 

2 = va x vp. 

We see that 

I3  VQ = 8. vp = 0, (2.19) 

so a and /3 are constant along the field line. By this definition is tangent 

to each of the families of surfaces Q = constant and ,8 = constant. The line of 

intersection of any two such surfaces therefore defines a line of force characterized 

by the associated pair of Clebsch variables (a, p ) ,  as sketched in Figure 2. 

The Clebsch variables are not uniquely defined, however. Any independent 

pair of solutions to (2.19) leads to some choice of cy and ,f3. Given a pair of such 

potentials, an alternate choice is q(a,p) and ((a,P), if 

(2.20) 

is satisfied. 
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c When the magnetic field is expressed in form of Clebsch variables, solving 

the force-free field equation becomes a task of seeking for two scalar functions 

a, p which represent the field and satisfy the force-free condition. Any change 

of the magnetic field will reflect on the corresponding variation of the families of 

Q = coitstant and p = coitstant surfaces. 

Figure 2. A sketch of the intersection of a = constant, p = 

constant defining a line of force of the magnetic field, B' = .Va x VP. 

c - 1 7 - .  



In ma.ny cases, the adoption of the Clebsch variables is convenient for nu- 

merical handling of the differential equations. Because of this advantage, the 

Clebscli variables were used in the pioneer works in solving a general force-free 

equation by Sturrock and Woodbury (1967)) Barnes and Sturrock (1972), and in 

a later work by Sakurai (1979). 

111 terms of the description (2.18), equation (1.4), which specifies the force- 

free state, becomes 

(V x 5) x (Va x vp) = [(V x Z) - vp1va - [(V x Z) * va’lvp = 0. (2.21) 

Thus we obtain 

( V x Z ) . V a = O ,  ( v x 5 ) - V p = o ,  

or in term of the electric current 

-t f J . v a = o )  j . v p = o .  

Equations (2.18) can be written as 

[V x (Va! x vp)] va = 0, 

[a x (Vcr x vp)] - vp = 0) 

whicli can be further expressed in terms of dyadic notation as follows 

(vp)2v2cu - vpvp : vva - ( V a  vp)v2p + vavp : vvp = 0, 

-(Va- VP)V2a  + vavp : vvck + ( V a ) 2 V p  - vava : vvp = 0. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The force-free field equations are nonlinear in terms of the Clebsch variables; 

ho\vevcr, equations (2.25) are linear in the second derivatives. 
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Sturrock and Woodbury (1967) applied a relaxation method to solve these 

equations (2.25) for a problem in rectangular Cartesian coordinates. In their 

method, the values of Clebsch variables were adjusted at  each mesh point to 

make - or tend to make - the field locally force-free. A similar method was 

applied to a problem in cylindrical coordinates by Barnes and Sturrock (1972). 

S a k e  (1979) also describes the field in terms of Clebsch variables in a 

different approach to compute three-dimensional force-free magnetic field config- 

urations. Based on the variational principles of the current-free and force-free 

magnetic fields, he employs the Rayleigh-Ritz method (Courant and Hilbert, 

1953) of representing the field in terms of a set of base functions and solving for 

the coefficients arising in this representation. 

Our recent work on computing the force-free field (Sturrock and Yang 1985; 

Yang, Sturrock and Antiochos, 1986), which we will discuss in the following 

chapters, also involves the Clebsch variables. 

What is the applicable range of the Clebsch variables to represent a magnetic 

field configuration ? This question naturally arises for answer. 

The expression (2.18) requires that Var and Vp must be continuous vector 

functions, so that the scalar functions ar(q and P(F) must have no singularity. 

Obviously, for a possible expression of magnetic field in terms of Clebsch vari- 

ables, no connection between any two surfaces of ar = constant, or any two 

surfaces of p = constant is allowed. As we shall show, it is impossible to con- 

struct field lines by the pairs of Q and P, if the field lines are l ink4 or knotted 
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c- a s  shown in Figure 3. What can be represented by Clebsch variables are simple 

field configurations. 

Concerning the complexity of the magnetic field configuration, one may 

recail the concept of magnetic helicity (Moffatt, 1983), which is defined as 

(2.26) 

where il'is the vector potential. 

Figure 3. (a) The two magnetic flux-tubes @ I ,  are linked in 

such a way as to give positive magnetic helicity. (b) A flux-tube @ 

in the form of a right-handed trefoil knot. 
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The magnetic helicity is a measure of the degree of structural complexity of 

the fi-field, related to the ‘interconnection’ of the field. For two untwisted closed 

flux tubes linked once and with a volume of integration containing both tubes 

(Figiire 3 (a)), we find that 

H = f2+1@2, (2.27) 

measure the magnetic flux of the tubes, and the sign of H whcre (111 and 

depends on the relative orientation of linkage. 

It may of course happen that A. B’ 0; this is the necessary and sufficient 

condition for the existence of Clebsch variables cr(q and p(F) such that 

-. 
A = crop, Z = Vcr x Vp, (2.28) 

which leads to 

H 0. (2.29) 

In this situation, the magnetic field lines are the intersections of the surfaces 

cr = constant: p = constant, and the A - lines a.re everywhere nrthngend tc the 
-+ 

surface a = constant. It is clear from the above discussion that magnetic fields 

having linked or knotted field lines can not admit such representation. 

An associated problem is that of gauge-invariance : let A + A+ Vx. We 

may tlcfiric an extended set of Clcbsch variables cr, p, x by the equation 

-8 

A = crop + Vx, (2.30) 

so that 
4 -. B r V  x A = V a  x Vp. 
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We see that 

Then from equation (2.26) the change in H is 

A H  = J V v x - ( V a  x Vp) dV 

(2.32) 

(2.33) 

Only if S is a magnetic surface, i.e. ii - 5 = 0 on S, will the helicity integral 

be gauge-invariant ( A H  = 0). Conversely, if AH # 0 (as will happen if the 

magnetic field lines are knotted or linked), then equation (2.30) is not a possible 

global representation for 2 and 2. Note that, if ii - l?ls # 0, we cannot simply 

choose to work in the Coulomb gauge in order to define H ;  the Coulomb gauge 

is ill-defined inside V without a knowledge of the outside field (Berger and Field, 

1984). 

2.3. Motion of Field Lines 

In classical fluid dynamics, the rate of change in some quantity C, as observed 

by a particle moving with the fluid’s velocity 5, is its ‘material derivative’ defined 

as 

(2.34) 
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which vanishes if C is convected with the flow. It therefore seems reasonable 

to find a similar way to demonstrate the motion of the field lines for a given 
-. 

magnetic field which changes with time. Obviously, one possibility is to use the 

Clebsch variables, which label the field lines. 

One of the basic MHD equations (Boyd and Sanderson, 1969), the induction 

equation, is 
a2 - a.4 = v x (v’ x Z) + ‘7v2 Z, 
UL. 

where 
C2 ‘7E- 
47ro ’ 

(2.35) 

(3.36) 

is the magnetic diffusivity. Here it is assumed that the electrical conductivity Q 

is constant in space. 

For a fluid at rest (.’= 0), equation (2.35) reduced to the diffusion equation 

aii c2 -. - -- -V2B. a 4x0 
(2.37) 

This means that an initial configuration of magnetic field will decay away in a 

‘diffusion time’ 

(2.38) 

where L is a length characteristic of the spatial variation of Z. For examples, for 

a typical sunspot magnetic field, L - 109crn, r - 10’4s(106-5years); for coronal 

fields, if L - 1Ol0crn, therefore, T - 1016s(109*5years). 

For a completely conductive plasma, the electrical conductivity o -+ 00. 

More generally, for times short compared to the diffusion time r, the diffusion 
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term, i.e. the second term in the right-hand side of equation (2.35) is negligible. 

We may then write 
- 
dl? -+ - = v x (ax B), dt (2.39) 

where V x (Gx l?) is the convection term. This indicates the so-called ‘frozen-in’ 

concept, that field lines are frozen into the fluid and are carried along bodily 

with it (Stern, 1966). 

If we represent the 2-field in the Clebsch variables, a and p, equation (2.39) 

becomes 

-(Va d x vp) = v x [ax (Va x VP)], at 

which can be further written as 

ap aa 
a a Va x v- - vp x v- = v x [a x (Va x vp)] 

= v x [Va(& vp) - vp(a- Va)] 

= V(G- vp) x va - v(a- Va) x vp. 

Hence we have 
dP d a  
dt dt va x 0--vp x v-= 0, 

where 
d a  da -- - - + a. Va, 
dt - dt 
dP -- - - + a. vp. 
dt - at 

There is a whole family of solutions to equation (2.4 

d a  d p  
dt dt 
-= - -  - 0. 
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(2.41) 

(2.42) 

3 

(2.43) 



That means, we axe permitted to suppose that the Clebsch variables, and the 

intersection of the or = constant and p = constant surfaces, that is the line of 
-. 

force, move with the fluid. 

If we write the left-hand side of equation (2.40) as 

a Do! 
at -(Va x OB) = v x (,vp - 

which is satisfied by 

(2.44) 

(2.45) 

(2.46) 

This solution is not unique. Any velocity parallel to may be added to it 

without changing the validity of equation (2.43). In what follows, we set the 

parallel velocity to zero, so when discussing the velocity of a line of force, only 
-+ th,e Ccmnnnent nmmenAL-iilsr t~ _R is im-~licd- r------ r -- r -I--- -- 

2.4. Variational Principles for Force-Free Mametic Field 

As is well-known in basic electromagnetic theory, the current-free magnetic 

field is the state of stationary (usually minimum) energy subject to certain bound- 

ary condition. This can be expressed as the variational problem : 

6W = 6 d3x = 0, (2.47) 

where B, i s  given on S .  
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This leads to V x l? = 0. It can be shown that the solution is unique and that 
., 

it makes W ,  the total magnetic field energy inside the volume V, a minimum. 

The situation is different if the volume V contains a plasma and the frozen- 

in condition of field lines is satisfied. For this case, an instantaneous value of B, 

is not sdiicient to determine the field configuration (Sturrock and Woodbury, 

1967). 

We consider a magnetic field that can be described by Clebsch variables CY( ?) 

and p(3, which are transported with the fluid as indicated in section 2.3. We 

now consider the variational problem : 

6 W ~ 6 J v  - d z =  B2 3 0 ,  
87r 

(2.48) 

where CY, p are given on S. 

Note that now not only B, is given on the boundary surface S but also the 

connection of field lines on S is given, because values of CY and p on S are 

fixed. This boundary condition leads in general to a magnetic field configuration 

carrying non-zero electric current. We find that 

1 6W 6[G /Y(Vcr x Vp)2 d3x] 

2. (V(6a) x Vp - V(6p) x VCY) d3x 

[6a(Vp x I?) - ~ ~ ( V C Y  x l?)] - n'dS 

1 - 
-4rrJv 

1 
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The surface integral vanishes since a, p are h e d  on S, i.e. 6a = 68 = 0 on S, 

and by setting 6W = 0 we obtain the equations 

i.e. 

j ’ -Va=O, j.vp=o, 

which are just equations (2.22) and (2.23) specifying the force-free state. Hence 

equation (2.21) is satisfied, this is j’ x 2 = o as is expected. 

So we may conclude from the variational principles that the force-free field is 

a state of stationary energy under the condition of a given flux distribution and 

connectivity of field lines. The current-free field is the absolute minimum-energy 

state under the condition of a given flux distribution. 
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3. NUMERICAL FORMULATION 

3.1. Iteration Formulation 

We have recently begun to explore a new approach of computing general 

force-free magnetic fields. We imagine that a low-beta plasma is confined inside 

a volume V .  We adopt 

the Clebsch variables Q and p to represent the magnetic field. The boundary 

condition is, therefore, decided by the given values of cy and p on the bound- 

ary surface s. We may set an initial field configuration which is required to fit 

the boundary conditions. If the initial field configuration is not force-free, as 

is most probably the case, field lines of this configuration would start to move 

with the plasma in the direction of the Lorentz force @. As discussed in section 

2.3, the Clebsch variable a and p will be transported with the plasma unless 

the local Lorentz force vanishes. If we let the field relax step by step with time, 

We assume that the frozen-in condition is satisfied. 

we will obtain a series of magnetic field configurations, represented by different 

distributions of functions a(7, t ) ,  p(7, t ) ,  each obtained by correcting the a,  p 

values of the previous step with changes &a and 6p due to the displacement 

of field lines. Following this basic idea, we may formulate an itcration pro- 

cess for our numerical calculation of force-free field by using a finite-difference 

, 

method. 

We set the recursion formula 
L+ 1 

a i l  j 

L+l = pif;. + spt j ,  pil j 



. .  

whcrc L is the number of iteration time internals, and ( i , j )  is the location of a 

mesh-point. Assuming that the displacement vector of a point on a line of force 

is 6[ ( r ' , t ) ,  the incremental terms can be written as 
4 

4 

Sa = -S[.Va, 

Sp = -6J.VB. 

We now suppose that the magnetic field is embedded in a highly conducting 

medium and that the parameters are such that the 'frozen-fiux' condition is 

satisfied. However, we suppose that the system also contains a medium fixed in 

space, such that the plasma experiences a frictional force when it moves with 

respect to that medium. Then the equation of motion of the plasma is 

ai? 
at 

p(  - + v'. v q  = -vp + p i +  F - ui7, (3.3) 

where F again represents the Lorentz force, p and p are density and pressure, 

9' is the gravitational field, and v is the coefficient of friction. In the situations 

vIIuv ALccu ,,u L u l L c - l i C c  llclua, p aid p aie iieg:igilk, 30 iliai equation (3.3) ieaas 

to 

th, t  l n m A  4.- s ---- s-',,, C - l J -  . /n "\ 1 v 

-+ 
4 

0 = v - 9 .  

On combining equations (3.4) and (2.43), we obtain the equations 

(3.4) 

(3.5) 

where u is so far an arbitrary function of space and time. In practice, it has proved 

convenient to choose v so that equations (3.5) lead to the following increments 
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for a and p for each time step : 

2 - V a  
B2 ' sa = -p 

where again p is an adjustable parameter. This so-called magneto-frictional 

method (Sturrock and Yang, 1985; Yang, Sturrock, and Antiochos, 1986), we 

find, is closely related to a method developed by Chodura and Schluter (1980) 

for application to problems of three-dimensional magnetohydrostatic equilibria. 

A stable numerical convergence by application of the finite difference method 

requires that the displacement of a point on a field line must be considerably 

smaller than the grid size, therefore, we suggest to take 

where Ax1, Ax2 are grid sizes of a two-dimensional mesh, X is a constant. Under 

this consideration, we rewrite the expressions for the increments of a and /3 for 

each time step as : 

where A,, Xp are adjustable parameters. 

T h e  iteration forms expressed in equations (3.8), simple in appearance, have 

proved effective in practical computation of force-free magnetic fields. The pa- 

rameters A, and X p  are generally less than unity. Larger A,, X p  may lead to 
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c a faster convergence, but they must be limited so as not to exceed some criti- 

cal valncs to avoid catastrophic numerical divergence. Practical experience tells 

us that A,, X p  should reduce to smaller values when the field configuration is 

distorted further from the current-free state. In the following chapters we will 

show some examples of force-free fields calculated by application of the numerical 

method represented by equations (3.8). 

The techniques represented by equations (2.24) and (3.8) for computing 

non-linear force-free fields appear to be quite different, yet this proves not to be 

the case. If we consider a rectangular coordinate system with equal mesh size h,  

Woodbury (1973) showed that the variations Sa, Sp required to satisfy equations 

(2.24) are given by 

We find that the determinant of the matrix is given by 

so that equation (3.9) leads to 

(3.10) 

va'yp) ( I 4 VP ). (3.11) 
-3 * V a  

This equation may be rewritten as 

(3.12) 
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which is clearly of the same form as equations (3.8). Although the relaxation 

approach begins from quite different premises, it leads eventually to similar equa- 

tions for computing force-free fields. 

According to our magneto-frict ional model, the field lines are continually 

doing work by magnetic force in moving against friction during the relaxation 

process. Since the only form to store energy is the magnetic field, we therefore 

expect that the field energy is continually decreasing. Let us assume that Iy is 

the total magnetic field energy stored in a volume V ,  then 

1 
TV = GIv B2 d3x,  

while the decreasing rate of TV can be written as 

On using equation (3.4), this becomes 

(3.13) 

(3.14) 

(3.15) 

This is confirms our conjecture that the total magnetic field energy will decrease 
+ 

monotonically, and that d W / d t  = 0 when F = 0 everywhere, this is, the 

magnetic field is force-free and a minimum-energy state. 

3.2. Finite Difference Method 

We consider a rectangular mesh on a surface S with coordinates z and z ,  

on which the grid sizes are 11, and h, ,  respectively. The values of the Clebsch 
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variables are given and fixed on the boundaries for a specified model concerned, 

and are also given inside the boundary as an initial field configuration. To per- 

form the numerical iteration process, we need to calculate the magnetic field, 

electric current, Lorentz force, and then the increment terms of a and p as seen 

in equations (3.8) from the first and second order derivatives of the Clebsch 

variables. For simplicity and economical satisfication, we may use second order 

central differences for computing derivatives of each interior grid point. Assum- 

ing a two-dimensional scalar function, say f(z, z ) ,  expressions for its first order 

derivatives are 

and expressions for its second order derivatives are 

(3.16) 

(3.17) 

where i and j are the grid numbers on the horizontal(s) and vertical(z) coordi- 

nates, respectively. In a two-dimensional case, (i, j )  indicates the location of a 

corresponding grid point. 

c 
For a force-free field, the electric current must be parallel to the magnetic 

and B' at  each field . This can be checked by estimating the angle between 
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mesh point, 

(3.18) 

which should approach to zero everhywhere during the iteration process. Note 

that if j .2 > 0,; is nearly parallel with g; while J .B < 0 , j  is nearly anti-parallel 

with I?. 

? +  ? 

In this numerical method the total magnetic field energy is calculated by 

summing up the field energy stored in individual cells, in each of which field 

strength is taken to be that at the center of that cell, i.e. 

(3.19) 

According to the variational principles discussed in the previous sections, perfor- 

mance of this numerical method can also be monitored by estimating the field 

energy, which is expected to decrease monotonically and approach asymptoni- 

cally a minimum-energy state. 

3.3. Adjustable Grid Sizes 

The weakness of the finite difference method with using consta.nt grid size, 

as described above, is that the grid size must be chosen quite small in order to 

attain appropriate accuracy. It would be very expensive in computing time if the 

calculation is run directly on a mesh with a large number of grid points. This 

is not only because we have to compute various physical parameters on a large 

number of grid points during each iteration, but also because the displacement 
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vectors, f, as seen in equation (3.2), have to take small values and therefore lead 

to a vcry slow convergence of the magnetic field lines. For many astrophysi- 

cal cases, we must calculate a force-free magnetic field over a very large scale, 

for example, to simulate coronal magnetic field configurations in a half-space 

domain. Calculation with constant grid size proves uneconomical and even un- 

acceptable. To overcome this difficulty, we adopt methods with adjustable grid 

sizes. 

(a) Multigrid Method 

It is advantageous to begin with a coarse mesh that can lead a fast conver- 

gence and get rid of perturbations of large wave number in a reasonable number 

of time steps. We then choose successively smaller grid sizes to continue the 

computation and obtain a solution with higher accuracy. A straightforward way 

is to simply divide each grid size into halves, i.e. hz2 = 0.5 h,l and hz2 = 0.5 h,l, 

so that the mesh number increases from N1 xN1 to N 2  x N2,  where N 2  = 2N1. 

Note that the horizontal mesh number and the vertical mesh number could be 

chosen to be-unequal. 

Let us assume that &!,, is the calculated value of a function f ( s , z )  at 

grid point (m,n) on the coarse mesh, and f!,;) is the expected value for f(s,z) 

at grid point ( i , j )  on the finer mesh. At any point ;n the re-gridded mesh 

that does not overlap a grid point of the coarse mesh, f!,;) can be estimated 

by numerical interpolation for the midpoint on the coarse mesh. For example, 

the grid point (2rn,2n - 1) on the finer mesh is located at the midpoint be- 
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twccn (rn,n) and (rn + 1,n) on the coarse mesh. By using the Lagrange four 

point interpolation formula, the value of f ( z , z )  at that point is estimated to 

be 

- -fm+2,n ( l )  + O(h:,). (3.20) 
16 

If i = 2, i.e. the f i s t  grid point next to the 2 = 0 boundary on the finer 

mesh, the f-function can be estimated by a Lagrange three point interpolation 

formula 

(3.21) 

Remember that the iteration on the re-gridded mesh will take small increments 

for the Clebsch variables as could be seen from equations (3.8). However, since 

the convergence of field lines now starts at an 'almost' force-free state, it will 

go rapidly and smoothly to a higher order of accuracy. For the situation re- 

quiring further high accuracy, one may regrid the mesh and repeat the iteration 

process again, and so forth. This multigrid method is found to be highly ad- 

vantageous in our calculations. Examples will be shown in the following chap- 

ters. 

(b) Ac1ai)tive-Grid Teclinique 

In the case of considering a force-free field wit11 infinite boundaries, one has 

numerically to extend the boundaries of the computing mesh to be as large as 

the computation capacity allows in order to simulate the real physical case. The 
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fact we know is that highly stressed field lines may inflate, moving towards an 

open-field configuration. The artificial pressure due to a finite numerical bound- 

ary may badly distort the outer field lines, and lead to an unacceptable result 

because of large errors introduced. If we set a mesh of very large scale and do 

not want to miss the fine structure in the strong field region, the required grid 

number could be too large for the capacity of our computer (VAX 750) even 

if a multigrid method were applied. One possible solution to this shortcoming 

is to adopt a larger mesh sizes in the weak-field region, so that the total num- 

ber of grids will be reduced without losing fine structures in the strong-field 

region. 

Figure 4 shows panels with variable sizes on a two-dimensional rectangular 

map. The expressions for the first and second order derivatives of the Clebsch 

variables at  each grid point can be computed by some linear interpolation tech- 

nique, .which are a little more complicated than those used for uniform meshes 

which are presented in equations (3.16) and (3.17). 

We may still assume a scalar function f(s,z), and introduce parameters 

defined by 

(3.22) 

c 

where Azi-, , Axi, Azj-1, and Azj are grid sizes, as shown in Figure 4. For a 

mesh with increasing grid size, we have p'," , p!j' < 0.5, for i, j > 2 . 
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The first order derivatives may be computed by 

which can also be written in the following forms 

(i  + 1 , j  + 1) 

Figure 4. Illustration of panels with varying sizes. 
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And we may apply the following forms for computing the secondary derivatives 

(3.25) 

In practice one may find that it is much advantageous to compute force-free 

field problems by using a multi-grid method on a mesh with variable grid sizes. 

It is convenient to treat problems such as magnetic dipole fields in a spherical 

coordinate system. We may arrange the increment in radius to be increasing with 

the radius, so the mesh will have larger grid sizes in the remote weak field region. 

Expressions for derivatives of the Clebsch variables could be obtained in a way 

similar to what is shown in section 3.3 (b). 

We have computed some force-free field problems on spherical coordinates. 

Results showed fast convergence of magnetic field energy. Computing y i th  spher- 
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ical coordinates is an appropriate way for studying large scale force-free magnetic 

fields. 
L 

There are two shortcomings for the use of spherical coordinate systems. 

One is that numerical formulae for computing physical items, such as magnetic 

field, current, and magnetic force, are not as neat as in a rectangular coordinate 

system. The second is that one has to create a subroutine to plot the contours 

of field lines. 
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4. TESTMODEL 

c 

We may start our calculation for some two-dimensional models in a rectan- 

gular coordinate system. To construct a magnetic field, say B ( x , z ) ,  we assume 

that the Clebsch variables have the forms 

4 

Following definition (2.18), we have 

da 
dX 

B, = -. 

Since the magnetic field is independent of y, the field configuration defined by 

equations (4.1) is determined by a ( x , z )  and -,(s,z). We find that the effect 

of the scalar function 7 ( x , z )  is only on the By-component. If 7 = constant 

everywhere, then By vanishes everywhere. We may consider that the function 

~ ( z ,  z )  represents displacement of field lines in the y-direction. The represen- 

tation of equations (4.1) is quite convenient for us to study the evolution of a 

force-frce magnetic field due to the shift of the footpoints of field lincs. This kind 

of shift, for example on the x - y plane, can be easily represented by the values 

of Yb, 0). 

If @(x, z )  is the magnetic flux embraced by x = x,,, x, and y = y1, yl + AY, 
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thcn we have 

or we h a  re 

provided that a(z0,z) = 0. Hence a is a measure of magnetic flux. 

In order to study the variation, during the iteration process, of the departure 

of the calculated magnetic field from the force-free field, it was convenient to base 

a test case on an already known force-free configuration. The following functional 

forms for a and /3 

Bo -12 a ( x , z )  = -- e coskx, k 
k2 
12 

z ,z )  = y - (- - 1)% P(.,Y,4 = Y - Y( 
(4.5) 

yield the field configuration 

1 
k 

B, = --Boe-"coskx, 

By = - ( 1  - -)1/2BOe-1zcoskz, 

B, = Boe-lzsitzkx, 

(4.6) l2  
k2 

where BO,  I ,  k are constants; and (4.6) is readily shown to be force-free for 1 5 k. 

This field configuration is periodic in the z-direction, but a section of it 

may provide a simple model for a coronal arcade of lateral extent ~ / k  (Priest 
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1982). The shear angle x, which defines the inclination of the field lines to the 

x-direc tion, is 
k2 
12 

x = tan-'( - - 1)i (4.7) 

at their summits. It is easy to see that when 1 = k, then x = 0, and T ( X , Z )  

vanishes, so that we have a current-free field 

As E decreases from k to 0, the shear angle x increases from 0 to $. Also we find 

V x = (k2 - Z2),Z, (4-9) 

so that this field model is a constant-X force-free field as we discussed in Chap- 

ter 1, when X = (k2 - l 2 ) + .  

The projections of the magnetic field lines of this field model on the 2 - z 

and 5 - y planes are shown in Figure 5,  where we adopted Bo = 2.0, k = 1.0, 

and 1 = 0.8. It is clear that the projections of field lines on the 5 - z plane 

are just the constant-a contours, while the projections of field lines on the x - y 

plane can be represented by constant-p contours on that plane. The numbers 

labeled on those contours represent the a (see the upper figure) and ,L? (see the 

lower figure) values respectively, which specify field lines individually by pairs of 
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Figure 5. Vertical and horizontal sections through a force-free mag- 

netic configuration described by equation (4.6) with Bo = 2.0, k = 
1.0, and f = 0.8. 
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We now set a rectangular boundary on the 5 - x plane of size 7r/2 x 7r/2, 

and added large perturbations 

Aa = -sin22 sin22, 

A? = 0.4sin2x sin22 
(4.10) 

to the force-free forms of Q(z,z), y(z,z), as shown in equations (4.5). We take 

this as an initial trial function. We may note that since Aa and Ay both vanish 

on the boundary, the field lines, though largely distorted inside the boundary, 

will have the same connection with the bounding surface as the force-free field. 

The values of a and -y on the boundaries were always fixed during the relaxation 

process, when we applied the iteration forms (3.8) to the grid points inside the 

boundaries. By noting that Vp = ij - Vy, we may write the increments of CY, y 

for iteration performance as 

(4.11) 

where F,? Fy, F, are components of the magnet.ic force calculzted hy the finite- 

difference method. 

To check the computation performance, we plotted the constant - a and the 

constant - y contours to compare with the force-free forms, and also estimated 

the magnetic field, the current, the Lorentz force, and the angle between the field 

and the current at each grid point during the iteration process to ensure that the 

magnetic field configuration was converging to a force-free state. 
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We first applied a very coarse mesh (8 x 8) to the case, on which iter a t' ion 

was performed about 60 times. The convergence of field lines represented by 

a series of a-contours and y-contours during the iteration process is shown in 

Figure 6. The initial field configuration is shown in Figure 6(a), on which we 

may see that field lines are distorted by a large amount from the force-free state 

and that there appears a magnetic island in the a-contours. We also show the 

forms of the potentials of CY and y after 5, 10, and 60 iterations on Figure 6 (b, c, 

d), repectively. From those figures we may see that the field lines converge quite 

rapidly during the first few steps because of the large initial magnetic force. Then 

they move smoothly towards a stable state, since the magnetic force becomes 

smaller and smaller when the magnetic field is close to a force-free configuration. 

Figure 6(d) is very close to the exact solution, as we compare the computed 

Q ( X ,  z )  and r( 2, z )  with the corresponding values of the analytical force-free 

forms. And the Lorentz force of this field configuration differs from zero by 

only of its initial magnitude. The average angle between current and the 

magnetic field in the initial field is I& N- 82". After 60 times of iteration it reduces 

to 86, z 0.8", and 6i,j is less than 0.1" in the strong field region, so that the 

current is nearly parallel with the magnetic field. This calculation takes only a 

few seconds on a VAX/750. 
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Figure 6. Contours of constant-a (projection of field lines) and 
constant-7 for two dimensional problem described in chapter 4. 

Calculation was performed on a very coarse mesh (8 x 8). 

(a) the assumed initial field configuration. 
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(6) field configuration after 5 iterations. 
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(d) field configuration after 60 iterations. 
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Figure 7 is a plot of the variation of the excess of the estimated magnetic 

energy over its exact value ( calculated by the analytical solution ) as the iteration 

proceeds. The magnetic field energy W in the initial trial configuration is about 

2.6 times of the force-free field energy Wo. We see that W converges to IVO nearly 

exponentially during the iteration process. This is just what we expect for our 

met hod. 

To obtain high order of accuracies, we may adopt finer meshes successively. 

This multigrid method has been described in Chapter 3. We list the results of 

calculation of the test model on a 8 x 8 mesh, then on a regridded 16 x 16 mesh, 

and on a 32 x 32 mesh in Table 1. 

TABLE 1 

RESULTS OF MULTIGRID METIIOD 
ON TEST MODEL 

Mesh iteration W fir) 
8 x 8  0 9.28244 81.5 

60 333585 0.79 

1 6 x  16 0 3.603 13 2.m 
60 3.6031 1 0.22 

32 x 32 0 3.60745 0.64 

60 3.60745 0.16 
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Figure 7. The excess energy of the colnputed force-fi-ee field over 

the energy of the exact field, as a function of iteration number, for 

the case described in Chapter 4. 
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From the results in Table 1, we see that the 

stable during the iteration process on the finer 

the 16 x 16 mesh and on the 32 x 32 mesh are 

magnetic field energy is almost 

meshes. The field energies on 

very close or just equal to the 

exact value one can obtain by substituting the Clebsch variables of the analytical 

force-free forms. The small change in the average angle between the current and 

the magnetic field, 8, indicates slight alignment of the electric current with the 

magnetic field in the weak field region. The advantage of the multigrid method 

is quite distinctive if we compare the above calculation with that by applying 

the fine mesh directly. To obtain a result with similar accuracy as that listed in 

Table 1 may take more than one thousand iteration times if calculated directly 

on a 16 x 16 mesh. One may also find that it is very difficult to converge the field 

configuration with such a large initial perturbation into a force-free solution by 

adopting a 32 x 32 mesh directly. 

The purpose of setting the initial field configuration with perturbation (4.10) 

is to investigate how the method works in case that the initial field is far from 

the force-free solution. One of the key points of this method is the moving of 

field lines in the direction of the magnetic force. The topology of the mag- 

netic field may change, the total magnetic field energy decreases, and the excess 

field energy is dissipating numerically during the iteration process. In partic- 

ular, the magnetic island shown in Figure 6(a) disappears from later config- 

urations. Such changes can occur only if reconnection of field lines is taking 

place. Although the equations that are the basis of our model dg not pro- 
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vide for reconnection, the implement of our numerical technique involves finite- 

difference approximations to the differential equations. The finite-difference 

representation involes ‘numerical dissipation’ that permits reconnection. It is 

clear that this (numerical dissipation’ is quite large in the case that we adopt 

a coarse mesh, since the field lines are allowed to displace a large step to- 

wards a lower energy configuration during each iteration. This kind of dis- 

placement may connect field lines with same labels and swallow the magnetic 

island. What we are interested is the final force-free solution of lowest energy, 

so the large ‘numerical dissipation’ is a benefit in providing a rapid conver- 

gence. 

The reader may worry about whether the large (numerical dissipation’ could 

lead to potential field instead of a force-free field. It will not in general be the case, 

since the field configuration must be compatible with the boundary conditions 

on the Clebsch variables that specify the magnetic connectivity. 

From the calculation of the test model, we may conclude that this method 

leads to the-particular force-free state with prescribed connectivity of the mag- 

netic field a t  the bounding surface, and with minimum energy. From the exper- 

iments done to date, it appears that the topology that has lowest energy is also 

the simplest topology. 
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5. ROTATIONAL SUNSPOT MODEL 

5.1. Solar Flares and Magnetic Fields 

Solar flares are energetic phenomena in solar active regions, which emit elec- 

tromagnetic radiations with a very broad range of wavelengths, in extreme cases 

from 0.002A up to more than 10km (Svestka 1976). Individual solar flares differ 

gre~t!y in size and energy rc lzsed. '#hat is col?ir~on to d of t h i i  is a rapiu ' 1  

temporary heating of a restricted part of the solar corona and chromosphere. 

Depending upon the magnetic configuration, non-thermal processes may also oc- 

cur at some places inside the flaring volume giving rise to accelerated electrons 

and atomic nuclei. The accelerated electrons manifest themselves through im- 

pulsive non-thermal X-ray and radio bursts which occur during the rising phase 

of the flare development. In some flares the non-thermal component is domi- 

nant. The accelerated particles, traveling into interplanetary space, may give 

rise to geomagnetospheric storms and brighten the aurora in polar regions. Ob- 

servations have found limb flares associated with the high-speed ejection of flare 

matter. 

From the statistical analysis of the observational data, it may be con- 

cluded that all solar flares occur in active regions characterized by sunspots, 

plages, and often quiescent filaments. By far the most flares occur in ac- 

c 
tive regions with developed sunspots. Flares which appear in an active re- 

gion without spots are exceptional events. Magnetic changes close to the zero 

- 55 - 



line (the longitudinal component BII = 0) appear to be of great importance 

for flare occurrence. Changes there may be due to emergence of new flux, as 

well as to deformations of field caused by motions and rotations of sunspots. 

According to Sakurai (1972), a necessary condition for the occurrence of ma- 

jor flares is a substantial increase of the gradient of the magnetic field, while 

high gradients are most likely to occur in a sunspot group with rotating mo- 

tion. 

The total energy released by flare processes has been estimated to be in 

ergs ,  which is generally believed to be stored in magnetic range of - 

form before the onset of a flare event. If the initial flare volume is V ,  the energy 

VV is gained when the field strength B decreases by 

A ( B 2 )  = 87rTV/V. (5-1) 

Thus for example for V = 

I.V - 
~ n 2 ~ ,  a decrease of only 0.03 - 270 G is required for 

- 1032ergs in it field originally of 600 G. This shows that in principle 

flarcs can derive their energy from the magnetic field. 

In consideration of observations ( Sweet, 1969; Sturrock, 19SO), it seems 

plausible to  accept the storage of magnetic energy by departure from a po- 

tential field, since the potential field represents the minimum energy state 

with no extractable energy. Then in view of the lack of apparcnt mo- 

tions in the solar atmosphere before flares, the energy storage in force- 

frce magnetic fields becomes of particular interest. As a practical exam- 

ple, Barnes and Sturrock (1972) have considered a sunspot of one polarity 
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surrounded by a magnetic field region of opposite polarity. Without any 

initial twisting the magnetic field has a current-free configuration. Then, 

however, the sunspot begins to rotate in consequence of differential rota- 

tion. The magnetic field configuration develops currents, but, because of 

the low plasma density, the field adopts a force-free structure. The en- 

ergy stored in the magnetic field will then increase as the rotation angle 

increases. Their calculation was carried out for a cylindrically symmet- 

ric model by applying a relaxation method as we have mentioned in Chap- 

ter 2. 

Figure 8 ( Nakagawa et al., 1971) shows a spiral topology of chromospheric 

fibrils and filaments observed in Ha near sunspots and the configuration of ax- 

isymmetric force-free magnetic lines of force. The field configuration resembles 

the situation Barnes and Sturrock considered. 

5.2. Modified Barnes-StuFrock Model 

In this section the particular field model we will consider is one of cylindrical 

If we introduce cylindrical coordinates r ,  0, z ,  the mqpetic field 
- 

symmetry. 

configuration &r,z)  may be represented by the two Clebsch variables in the 

forms 
a = a(r ,z) ,  

P = 8 - Y(T, z) ,  

(5.2) 

where the scalar function y(r,z) traces the variation of 8 along a field line, since 

c 
p = coizst. on a field line. 
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Figure 8. An example of spiral topology of filamen ts near a sunspot 

in Ha observation (Big Bear Observatory, 9 September 1970) and 

the configuration of lines of force of force-free magnetic fields; al ,  

a2 tbe B(')-field (the simplest solution) and bl,  b2 the D(')-field 

(the next solution) for the spiral angle 45" (Nakagawa et al., 1971). 
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The gradients of a, /? in cylindrical coordinates are 

where 1’, 8, i are unit vectors of the corresponding coordinates. So the compo- 

nents of the magnetic field a.re 

If G(r , z )  is the magnetic flux embraced by the circle z = const., T = const., we 

find that 

@(r,  z )  = Bz(r’, z)27rr‘dr = 27ra(r, z ) ,  ( 5 . 5 )  

provided that a(0, z )  = 0, which we may set as an appropriate bounchry condi- 

tion. So again, as in the rectangular model, a is a measure of magnetic flux. 

By choosing units appropriately, we may write the electric current from 

Amp6rk’s law as 

d = V X l ? ,  (5 .6 )  

and tlic Lorentz force as 

@ = f x l ? .  
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T h  C mponents of the electrical current, therefore, are 

-. dBr  dBz 
Je = (V x B)e = - - - dZ dr ’ 

l d  
r dr 

-. 
J z  = (V x B), = --(rBe). 

In terms of a and 7, equation (5.8) can be rewritten as 

The components of the magnetic force are 

Fr = JeB, - JzBe, 

Fe = JzBr - JrB,, (5.10) 

F, = JrBB - JOB,. 

For the special case 7 = constant, we find that Be = 0 from equation (5.4), and 

Jr = J z  = 0 from equations (5.8) or (5.9). The Lorentz force then rcdtices to 

@ = Je(B,i - B,;). (5.1 1) 

The force-free equation therefore reduces to the current-free equation 

(5.12) 



By substituting expressions of the field components in equations (5.4) into equa- 

tion (5.10), we obtain a single equation 

(5.13) 

which obviously is a much simpler form than that of the general force-free field 

equation. 

Barnes and Sturrock (1972) adopted a model defined by the following bound- 

ary condition at z = 0 in their calculation: 

a(r ,  0) = e l / ’ ~ - l  re- r2 /2 R 2  , 
(5.14) 

Since this model contains a mild singularity of the B, component at the origin, 

we chose to modify the function a(r,O) slightly to avoid that singularity. The 

boundary conditions we have chosen for a and y on the plane z = 0 are 

1- n\ n 2 --r2!Ra 
O \ r , V )  = Dol‘ e 9 

(5.15) 

where r(r,O) has the same form as in equations (5.14). From (5.15), we obtain 

-r2 f R 2 ( l  - r 2 / R 2 ) .  (5.1G) 
da 
-(r,O) = 2Bore dr 

R is a characteristic radius, where cr(r,O) takes the maximum value amaZ = 

BoR2/e, if Bo > 0. In our calculation we chosed Bo = e/R2, so a,,, = 1. Also 

we have 13, > 0 for 0 < r < n, and 13, < 0 for r > R on the boundary surface 
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z = 0. The angular displacement of foot-points of field lines, defined by y(r,O), 

couple a region of positive polarity ( r  < R) to a region of negative polarity 

( r  > R), and is proportional to y ~ .  The maximum angular displacement for any 

field line is yM. 

For numerical computation, it is necessary to impose boundary conditions 

on each of the variables cy, y on a closed boundary. It is convenient to choose 

cy = 0 on the remaining three segments of the ‘box’ in which calculation are 

carried out, so the first field line originated from the origin point goes along the 

segments of the boundary, and is connected to the edge of r = T , , , ~ ~ ,  z = 0. 

This field line embraces the area of z > 0, and makes the situation similar to 

containing magnetic field pat terns in a ‘superconducting box’. The boundary 

values y are chosen to be exponentially decreasing along the z-coordinate with 

a base value y(r,O) pre-set in equation (5.15). The decreasing rate is fluxible to 

arrange. Since we are seeking for force-free field solutions with an infinite half- 

space boundary condition, we must adopt the size of the box sufficiently large 

to reduce errors due to the artificial pressure introduced by the finite numerical 

boundary condition. Also choosing the model (5.15) allows the magnetic field 

strength drop off rapidly with distance from the origin for r >> A!, so that the field 

configuration in the strong field region, the important part of our investigation, 

is therefore insensitive to the precise condition at the boundary segments. 

I t  is of course our interest to investigate the energy argument concerning the 

magnetic field patterns with closed field lines and that with so-called open field 
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lines. Following Barnes and Sturrock (1972), we adopted the boundary condition 

for the open field pattern on the z = 0 plane as 

and the boundary conditions on other segments to be 

Q(0, z )  = 0, 

(5.17) 

(5.18) 

It is convenient to choose the initial field configuration as 

where parameters qr z r / L ,  q2 E z / L ,  and we define L rmaz = z m a z .  Equa- 

tion (5.19) satisfies the boundary conditions defined in equation (5.18) and is 

well behaved inside the box. 

However, the energy stored in the open magnetic field outside this boundary 

is small but not insignificant. It may be estimated, with sufficient accuracy, as the 

energy of the radial magnetic field (outside the boundary) of a point inonopole 

of appropriate flux strength. The formula (Sturrock, 1985) is found to be 

(5.20) ' 

To estimate the magnetic field energy of the open-field structure, we add W 0 , t  

to the amount calculated numerically inside the boundary. 8 
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In the two-dimensional cylindrical coordinate system, the increments of a,  

+y for the iteration scheme have the forms 

(5.21) 

To compute the force-free magnetic field, we set up an initial field configura- 

tion subject to the given boundary condition, and then relaxed the field lines by 

applying the numerical method described in Chapter 3. We calculated a sequence 

of magnetic field configurations for the values y~ = 0,0.57r, T ,  1.5n, 2ir, 2 . 5 ~ ,  and 

37r, where YM = 0 corresponds to the potential field. The scale sizes of the 

computing mesh are taken as L = rmaz  = z,,, = 320, and the characteristic 

radius R = 14, so L x 23R. The resulting magnetic field configurat,ions are 

shown in Figure 9(a)-(g). We find that field lines are pushed outwards when the 

maximum twisting parameter - y ~  increases. Figure 9(h) is the corresponding 

open-field configuration. For this choice of size L, the results are quite accept- 

able for YM < 27r. However, it is obvious from the calculated field configurations 

that outer field lines are severely distorted by the finite boundary when Y A ~  takes 

larger values, for examples, y~ = 2.5.rr, 3n. 

For each case, we have computed the total magnetic field energy. The results 

are listed in Table 2, together with our estimate of the total magnetic energy of 

the corresponding open-field configuration. The relation of magnetic field energy 

I+' with the parameter ynf is also shown in Figure 10. 
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Figure 9. Contours of constant a (projection of field lines on the 
r - z plane) for the force-free field model of cylindrical symmetry 

described in chapter 5, with a sequence of twisting parameter 7M, 
the relative rotation of the regions of positive and negative polarity. 
Figure 9(h) gives tbe contour of constant a for the corresponding 
open-field configuration. , 

(a) TM = 0, the potential field; (b) rM = 0.51~. 
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(g) YM = 37r; (h) the corresponding open-6eld configuration. 
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TABLE 2 

MAGNETIC FIELD ENERGY AS A 

FUNCTION OF ROTATION 

7M W 
0 0.752 
0 . 2 5 ~  0.820 
0 . h  0.980 
A 1.380 
1 SA 1.700 
27r 1 .goo 
2.5A 2.00 

open f i e l d  2.001 

This estimate is only a.pproxiniate due to slow convergence and proxiniity 

of the bounda.ry. However, this value estimated has been confirmed by further 

calcirlation on a mesh of size 480 x 480 with  applicat,inn of variahle grid sizes, 

SCC discussion in section 5.3. The estimate for 7 ~ f  = 3a is even less ccrtain and 

is not given. 

' Ttie eriergy of the open field has  been estimated by adding to the energy 

of t ~ i c  ~ i c ~  witIliti tlie box an estimate of tlie energy of the field outside tlie box. 
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Figure 10. The magnetic field energy of the modified Darnes- 
Sturrock model of Chapter 5 as a function of 7 ~ ,  which measures 
the relative rotation of the positive polarity region and the negative 
polarity region in a cylindrically symmetric system. Also sliorvn is 
the energy of the corresponding open-field configuration. 
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From the computed results, we see that, as the stress of the force-free field 

increases with the increase of the value of the parameter Y M ,  the total magnetic 

field energy W approaches asymptotically, but does not appear to exceed, that of 

the corresponding open-field configuration. There is a striking difference between 

our present results and those of the earlier work by Barnes and Sturrock (1972). 

According to the earlier results, as seen from the W - T M  curve in Figure 5 of 

the article by Barnes and Sturrock (1972), it appeared that dW/dynt  > 0, and 

d T V / d y ~  x 0.8/n, when 7~ > T ;  with the increase of value of T M ,  the magnetic 

field energy FV reaches the energy of the corresponding open-field configuration 

when Y M  M l.lr, and W > W a p e n f i e l d  thereafter. 

Aly (1984) has considered boundary problems of force-free fields with fixed 

values of the normal component Bn on the boundary surface. H e  has conjectured 

that the energy of any force-free field in a half-space domain cannot exceed that 

of the corresponding open-field configuration, and siiggested that tohe residts of 

+hn RQrnoe_CC..-rr*lr m-lm..l..b:-- ..*--- .- ----- 
Y A A u  Y u A a a b Y  W U U A A U c I n  L u A c I U i a u A u A A  W v L A c I  1u L L L u L .  It Z ~ ~ ~ Z I Y ,  theidGie, that oiii 

present calculation do not support the proposal of Barnes and Sturrock (1972) 

that the energy of force-free field can exceed that of the corresponding open-field 

- 

configuration. On the contrary, our present studies support Aly’s conjecture. 

5.3. On the Influence of Boundarv 

Our numerical calculation of force-free fields is carried out in a system with a 

closed boundary. The magnetic field then is confined inside the super-conducting 

box by some kind of artificial pressure produced by the finite boundary. If we 
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enlarge the size of the box, obviously, the magnetic field lines will follow to ex- 

pand. The total magnetic field energy inside the box will increase if we reversely 

reduce the size of the box, because work has to be done against the magnetic 

field pressure to squeeze the field lines. Therefore it is expected that the esti- 

mated energy of the magnetic field contained in a finite ‘super-conducting’ box 

will exceed that of the magnetic field with an infinite external boundary. 

To estimate the influence of the boundary on the calculation, we have com- 

puted the force-free field problem described in equation (5.15) of section 5.2 on 

boxes with different sizes. We adopted the value TM = 2 . 5 ~ ~  in that case the 

magnetic field is expected to be largely sheared. By taking R = 14, the same as 

we defined in section 5.2, calculations have been performed on meshes with sizes 

fma, x Zmaz = 80 x 80,160 x 160, and 480 x 480. 

The magnetic field energy (inside the box) calculated on mesh of size 80 x 80 

is, VV = 1.34W0,,, (energy of the corresponding open-field). The field configura- 

tion of the result is plotted in Figure ll(a). One may find that the magnetic field 

lines are very badly distorted by comparing them with those of Figure 9(f) where 

calculation was done on a mesh with a scale size of 320 x 320. The magnetic 

field pressure on the external boundary, which we may estimate numerically, is 

too large to be negligible. This result has a big error from the force-free field 

solution of half-space domain, and therefore is not acceptable. 

The magnetic field lines were more relaxed when we calculated the force- 

free field problem on a mesh with size 160 x 160, and the energy’(inside the box) 
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c reduced to W = 1.20Wopen. Further we computed this force-free field model on a 

mesh of size 480 x 480 by applying the method of variable grid sizes as described 

in section 3.3.(b). For convenience to compare this result with that of Figure 

9(f), we plotted a section of the computed field configuration on a 320 x 320 map, 

see Figure ll(b). It appears that the field lines expand further outward. The 

magnetic field energy estimated is W M W o p e n .  

--- 
We have ais0 computed the Barnes-Sturrock model on meshes with different 

scale sizes by applying our numerical method described in Chapter 3. The results 

tell that there are two aspects which might cause the over large field energy 

estimated in their calculation. The main cause is that the size of the ‘computing 

box’ they adopted is too small for YM > 7r. The other possible cause is that 

the field lines might not relax adequately to a force-free state. This point could 

be seen by comparing the field configurations resulting from those two different 

numerical approaches. . 

So to ensure that the results of calculation represent force-free field solutions 

with sufficient accuracy, it is necessary to perform the computation on meshes 

with large enough scale sizes to reduce the influence of the external boundary to 

an acceptable extent. Clearly the method of variable grid sizes has the advantage 

in computing large scale force-free field problems. 

Another approximate method of correcting the influence of boundary is that 

we estimate the total magnetic field energy by the magnetic field energy inside 
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the box minus a correct term A E .  A E  is estimated by 

1 
8K 

AE = - < B; > V, (5.22) 

where V is the volume of the box, and < Bi > is the average value of B2 on the 

boundary. In general A E  is a small term if the scale size of the box is chosed 

to be appropriately large for computation. A E  increases with the increase of 

the twisting parameter 7 ~ .  For the calculation of the field model described in 

section 5.2, we found that A E  5 10-5E, when 7~ 5 T ;  AE - 0.05%E, when 

7~ = 1 . 5 ~ ;  A E  - 0.3%E, when 7~ = ZK. There are some uncertainties in these 

estimations, because of the difficulty of convergence of magnetic field lines in 

the remote weak field region. To make sure that the term expressed in equation 

(5.22) reflects the effect of the boundary on the total field energy of a force-free 

solution correctly, we need to  improve our computation technique to ensure that 

the magnetic field lines inside the box are well converged to a force-free state 

(6 11 f) in the weak field region as well as in the strong field region. 
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Figure 11. A comparison of magnetic field configurations of the 
modified Barnes-Sturrock model calculated on meshes with differ- 

ent scale sizes. (a) Computation performed on 80 x 80 mesh. 
(b) Computation performed on 480 x 480 mesh with variable grid 

sizes. Shown in this figure is a section (320 x 320) of the result. 
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6. ACCRETION DISK MODELS 

6.1. Keplerian Disk Model 

The accretion process of plasma captured by the gravitational force of com- 

pact objects is widely acknowledged as an important astrophysical phenomenon. 

This accretion process could happen in neutron stars where accreting material 

could be fed from interstellar medium or from the wind of a companion star 

in the case of binaries, which has been suggested as a model of compact X-ray 

sources. Black hole models for active galactic nuclei suggest that the accre- 

tion flow could be formed by falling-in matter from the body of the galaxy (gas 

expelled from ordinary stars via stellar winds and supernovae), or even come 

from intergalactic clouds captured by the galaxies (Rees, 1984). The forma- 

tion of an accretion disk is a possible pattern of the accretion process. Ac- 

cretion disks have been reviewed by Pringle (1981) in a general astrophysical 

context. 

Our interest in this work is to consider the magnetic field structure and 

evolution of the magnetosphere of a magnetized accretion disk. We adopt the 

simplest hypothesis that the central compact object is being fueled steadily via 

a thin accretion disk. The dense plasma is contained within a tlliclillcss 11, which 

is much smaller than,the radius of the disk. Around the disk plasma may have 

corona-like structure. We assume that the plasma at each radius of the disk is in 

a nearly Keplerian orbit. The magnetic field embedded in disk plasma may be 
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amplified by shearing motions and possibly by turbulence-driven dynamo action. 

To be similar to what happens in a rotational sunspot magnetic field, a bipolar 

magnetic field rooted on an accretion disk may be continuously sheared due to 

the differential rotation, and evolve through a series of force-free configurations 

until some instability occurs and leads to flare-like eruption. 

For simplicity, we assume that each part of the disk moves along a circular 

Keplerian orbit around the central object. The velocity of plasma at radius r is 

and the angular velocity is 

where G is the gravitational constant, M is the mass of the central object, and 

the constant 5 G (GM)’12. 

The differential rotation rate for plasma at  different radii, say R1 and R2, 

can be written as 

AQ = k(%-”/’ - R[”/’). . (6.3) 

Ail is negative when Rz > R1, which means that rings farther.from the central 

object rotate at lower angular velocities. The local shearing rate, defined to 

estimate the shearing extent at a certain radius, is , 

We assume that the strong field region of a bipolar magnetic field model 

remains in a region Rl 5 r 5 Rz. A t  a time t ’=  0, the differential rotation angle 
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for a point a t  R, relative to a corresponding point at R, is A 9  = 0; then at time 

t, from equation (6.3), we may find 

A(p(r,t) = - 7 M  (R,3/2 - T - 3 / 2 ) ,  
( q 3 P  - q - ” 2 )  

which indicates the twisting angle at radius r of the disk relative to a cor- 

responding point at R,. Figure 12 shows the differential rotation of a cir- 

cular Keplerian disk at times t = t o ,  tl t 2 ,  t 3 ,  t q ,  with corresponding values 

yhf = 0,7r/2,7r, 3?r/2,27r. In the calculation, we adopted R1 = 1.0, n, = 3.0. 

6.2. Force-Free Field Models and Calculation 

In this section we are going to investigate the evolution of force-free fields 

with footpoints fixed on a Keplerian accretion disk. As we discussed in section 

5.2, for the cylindrically symmetric situation the flux distribution of magnetic 

field could be described by the boundary value of one of the Clebsch variables, 

i.e. a(r,O). The numerical method we discussed in the previous chapters is 

convenient for us to compute force-free field models by adopting various kinds of 

distribution of a(r ,  0) on the accretion disk. The twisting extent of the magnetic 

field due to the differential rotation of the disk can be described by the function 

T(r ,O) ,  which may simply have the form of (6.6). 
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Figure 12. Illustration of the differential rotation of a Keplerian 
accretion disk. 
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(a) Single Field Model 

For a simple case we choose the boundary condition of the Clebsch variables 

on the disk as 

and 

respectively, where Y M  defines the shearing angle between corresponding foot- 

points at R1 and Rz. a(r,O) has a form similar to the rotational sunspot model 

adopted in equation (5.15) except that we shift the footpoints of field lines a 

distance n, in the radial direction. It is easy to find that a(r,O) reaches its 

maximum value at r = R1 + E ,  so the magnetic field changes its polarities at this 

radius. We start our calculation by taking TM = 0, which gives the correspond- 

ing potential field configuration. Then we increase the value of Y M  step by step, 

which indicates the continuous twisting of the field during the differential rota- 

tion of the disk. In our calculation we adopted Bo = e/R2, R = 16.0, I21 = 16.0, 

and R2 = 48.0, so we have 0 5 a( r,  0) 5 1. The magnetic field configurations for 

7 ~ 4  = 0, and 27r are shown in Figure 13(a), (b), respectively, The computation 

was performed in a box of a scale size of 400 x 400, where we took larger grid 

sizes when r,z > 320. 

The results of this calculation, as expected, indicate that the magnetic field 

lines expand towards the corresponding open-field configuration during the ro- 

tation of the accretion disk. 
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(b) Calculation of Magnetic Torque 

From the conservation of angular momentum (Jackson, 1962), 

the total magnetic torque can be calculated by a surface integral 

(6.10) 

where L is the angular momentum density, n' is the normal unit vector of the 

boundary surface S, and the flux of angular momemtum M is the tensor defined 

by 

M = T x F ,  (6.11) 

where T is the Maxwell stress tensor shown in equation (2.5). 

For our accretion disk field model, the magnetic torque can be estimated by 

a surface integral on the disk plane. Therefore equation (6.10) reduces to 

(6.12) 

. .  
where du is the element of area on the plane of the disk. 1 1. 

. r  

In the situation we consider, there are no electric field terms attributing to 
. .  . .  

the Maxwell stress tensor. We substitute the expression of T in equation (2.5) 

into equation (6.11), obtain an expression for angular momemtum flux M, and 

then substitute thk into equation (6.12). We then obtain 
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The second term is due to the magnetic field pressure on the disk, and has . .  

a tendency to bend the disk plane. The first term is what interests us in this 

calculation, and is due to the tension along the field lines. We may rewrite this 

term in the form 

Qz = a /  r2BtBe dr. (6.14) 

For the cylindrically symmetric case, the azimuthal component of the mag- 

IIGtic A u A L c  G a l  be derived by substituting equation l a . ~ ~  into equation \a.iu). 

We find that 

I C  . rr\ -_ $-.--- --- / P  r \  * 

which can be rewritten as 

(6.15) 

FB = -V(rBe)  1 .. - 2. (6.16) 
r .  

If the magnetic field is force-free, Fe is zero everywhere. This indicates that 

rBe = constant along the magnetic 5eid fine. From the conservation of the 

magnetic flux, we know that B.da '=  constant along a magnetic field flux tube. 

So for our bipolar force-free magnetic field model, the integral in equation (6.14) 

vanishes, i.e. QL = 0. Hence if R,, is the 'reversing radius' of the polarity of the 

bipolar magnetic field, the following condition must be' fulfilled : 

where 

&I F -&2, 

- 8 3 -  I . .  

. I. 

(6.17) 
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r2 B, Bodr. 

We have computed the magnetic field energy W, and magnetic torques Q1, 

Q 2 ,  and AQ for a series of values of y~ in the model described in section (a). 

For y~ = 27r, as an example of our calculation, we find that 

Q1 = -1.000 x 

Q2 = 1.000 x 

AQ Q1 + Q2 4.572 x 2 0, 

so that the difference between the computed IQ11 and lQ2l is within 0.05%. 

The curves relating W to YM and Q to Y M  (Q z ,IQ11 = IQ2l) are plotted 

in Figure 14. 

From the results of the calculation, one may see that the magnetic energy 

W increases from the minimum level of a corresponding potential-field state, 

and approaches asympototically towards the open field energy. This result is 

in agreement with what we obtained in Chapter 5. From the’ energy theorem, 

the increase of the magnetic field energy is the result of work done against the 

azimuthal force, Fo, during the twisting of the field lines. When Y M  is large 

enough, the magnetic field energy is close to the open field energy and nearly 

saturated. Any further twisting of the field will not pump significantly more 

energy into the magnetosphere of the accretion disk. The torque Q, therefore, 

increases from zero to its maximum value, and then decreases and approaches 

zero with further increase of the twisting amount 7M. Our calcdation showes 
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that the turning point for W ( where . alv takes maximum value) and hence for 

Q, occur a t  the value of YM of about 0.7~. 

The magnetic torque' obviously contributes to the viscosity of the disk 

plasma. 

. 
(c) Multi-field Models 

The magnetic field of an accretion disk may have complex structures. As a 

further application of our numerical method, we have computed force-free field 

models with more than one bipolar magnetic field co-existing on a single accre- 

tion disk. The purpose of this calculation is to  investigate the mutual influence 

of those magnetic fields during the evolution process. The numerical method ap- 

plied in the calculation will lead to field configurations in their minimum energy 

states, although the physical process leading to the results will not be shown in 

the iteration process. 

For two adjacent bipolar magnetic. fields on an accretion disk, the evolution 

of the fields-depends on the distribution of the polarities of the fields. If two 

magnetic fields have opposite polarities in their neighboring zone, reconnection 

of the magnetic field lines may happen, and could play an important role in 

deciding the field configuration. This situation has some similarity with Sweet's 

solar flare model (Sweet 1958). The expansion of field lines due to twisting of 

the footpoints may enhance this reconnection process. I 
c 

Another case is that the two bipolar magnetic fields have the same polarity 
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in their neighboring zone. Then reconnection of field lines will not occur in this 

region. The general field configuration depends on the balance of the magnetic 

pressure of the two fields. 

To study field evolution in this case, we adopt a model described by the 

following boundary conditions 

r i &; I n  ' "9 

where Rz = R1+4R. And r(r,O) chosen has the same form as that of expression 

(6.8). With this choice, there are two bipolar magnetic fields embedded on the 

disk. One is rooted in R1 < r < R1 + 212, and the another in R1 + 2 R  < r < Rz. 

In the calculation we choose R = 16.0,: and R1 = 16.0. 

The magnetic field configurations for -yM = 0,7~,27r, and 37r are plotted in 

figure 15 (a), (b), (c), (d) respectively, where 7~ is defined in equation (6.5). 

Figure 15 (a) represents the current-free field configuration, so the azimuthal 

component of the magnetic field equals zero everywhere. This field configuration 

gives the minimum magnetic energy with the given boundary value of a(r>O), 

or Bz(r,O). The parameter 7~ is a measure of the extent of the twisting of the 

magnetic field. The local shearing rate, defined in equation (6.4), is proportional 

to r -3 /2 ,  The differential rotation, therefore, is larger for the inner field, SQ 

the inner field will be twisted more than the outer field during the differential 

rotation. Hence in the initial stage the. inner field expands with higher magnetic 

pressure. The outer field is pressed dawnwards, and even overlaid by the inner 
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field (see Figure 15 (b), (c)). However, during the later evolution period, the 

situation might be reversed. As we know from the study of the single field model, 

the inner field (energy) is nearly saturated after a certain extent of twisting, 

so that field pressure does not increase further with the differential rotation of 

the accretion disk, but the outer field can still be greatly enhanced. It is now 

its turn to expand and press the inner field inwards. An example of the field 

configuration for this later situation is shown in Figure 15 (d). If there is no 

instability occurring, we expect that both fields will extend towards a combined 

open-field configuration. 

This field model has obviously been idealized. We have assumed that all the 

fields have cylindrically symmetric structures, but the calculation show us qual- 

itatively the possible effects of the mutual interaction of neighboring magnetic 

fields on their evolution due to the differential rotation. 

6.3. Extra-Galactic Radio Sources and the Accretion-Disk Flare Model 

The discrete sources of radio emission were first distinguished from the gen- 

eral backgroud radiation during the 1940’s, and initially were thought as galactic 

radio stars (Kellermann, 1974). Later identification made it clear that at least 

some of the discrete sources were of extra-galactic origin. Galaxies which are 

identified with strong radio sources are generally referred to as ‘radio galax- 

ies’. Another class of radio sources is usually referred to as ‘quasi-stellar radio 

sources’, or radio emitting quasi-stellar objects (QSO’s) or ‘quasars’, where the 
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word 'quasar' is generally used to refer to the entire class of stellar-type objects 

with large apparent red shifts. 

The total power radiated at radio frequencies extends from about 1038erg/s 

from so-called normal galaxies, to lo4' erg/s from the weaker radio-emitting el- 

liptical galaxies such as M87, and up to 1045erg/s for the most luminous radio 

galaxies such as Cygnus A and 3C295 and many quasars. It is generally ac- 

cepted that the radio emission from both galaxies (in&.dlng ncr nwn C -a  1 auw) - J / 

and quasars is due to synchrotron emission from relativistic particles moving in 

magnetic fields. The amount of energy require in the form of relativistic particle 

is, however, very great, and the source of energy and its conversion into relativis- 

tic particles has been one of the outstanding problems of modern astrophysics. 

Observation indicates that for most of the sources a simple single-component 

structure is very rare. Often the source is extended along a single axis, and the 

most common configuration is the double structure where most of the emission 

comes from two well-separated components. Frequently the two components are 

quite surprisingly of approximately equal size, as for example shown by the map 

of Cygnus A shown in Figure 16 (Mitton and Ryle, 1969). 

c 

New aperture-synthesis arrays (Davis et.al. 1980) and new image-processing 

techniques (Cornwell and Wilkinson 1981) have allowed radio imaging at sub- 

arcsecond resolution with high sensitivity and high dynamic range; as a result, 

the complexity of the brighter sources has been revealed clearly for the first 

time. Many contain radio iets, i.e. narrow radio feature between compact cen- 
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i c  tral ‘cores’ and the more extended ‘lobe’ emission. Figure 17 shows the VLA 

maps of the jets in the weak radio galaxy M84 at  4.9 GHz (Bridle and Perley 

1984). The formation of extra-galactic radio jets is one of the most challenging 

problems of modern astrophysics. 

As an early effort to explore the physical nature of the extra-galactic ra- 

dio sources, Sturrock and Barnes (1972) proposed a mechanism, called ‘galactic 

flares’. They suggested that the magnetic field linking the inner and outer part 

of a disk may be distorted along a sequence of force-free configurations and lead 

to an open-field configuration. They conjectured that the transition from the 

closed configuration to an open configuration will be effected by an MHD ‘erup- 

tive’ instability. The magnetic free energy may then be released explosively by 

the flare mechanism. The radio clouds ejected from galaxies and quasars then 

form the extra-galactic radio sources. However, one shortcoming of this model is 

that the conjecture was based on the result of their earlier calculation about the 

magnetic field energy of closed configuration and of corresponding open config- 

uration (Barnes and Sturrock 1972)’ which has now been found to be incorrect 

(see Chapter 5).  

In a recent article, Sturrock (1985) proposed a flux-tube model. He suggested 

that the flux tube is rooted in an accretion disk, then differential rotation of the 

disk may lead to a progressive stretching of the loop, and finally lead to ejection 

of the plasmoid comprising a toroid. 
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c The calculation of models in section 6.2 (a), (b) and (c) is a numerical 

effort to investigate the so-called ‘accretion disk flare’ model for producing extra- 

galactic radio sources. The calculation of the single field model in section 6.2 (a) 

shows that the magnetic field rooted on an accretion disk could be distorted 

by the strong differential rotation of the accretion disk, and evolve from an 

initially current-free state through a series of force-free state towards an open- 

field state. This process is similar to what could happen for a rotating sunspot. 

One may expect flare-like activity to occur in the magnetosphere of the disk. The 

magnetic field lines may be reconnected through the tearing-mode instability. 

The ejected plasmoid may have a toroidal magnetic-field configuration because 

of the reconnection. It is not clear yet that whether a fast reconnection will occur 

when the field is highly stressed but still closed or after it reaches the open-field 

state. 

distribution with respect to the disk piane, radio clouds may be produced at the 

same time or different times and ejected in opposite directions. 

The calculation of the double field model in section 6.2.(c) is to investigate 

c 

the somewhat more complicated and also more important situations where more 

than one bipolar field co-exist on the accretion disk. With the strong differential 

rotation of the disk, the inner field will be highly stressed, by the meantime, the 

outer field will be highly pressed by the inner field. A typical field configuration 

for this situation is shown in Figure 15 (c). The important point is where the 
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instability might take place first. From the changes of the field configuration with 

the rotation of the disk, it seems that reconnection could happen first either in 

the inner field or in the outer field, which may depend on the distribution of 

their magetic fluxes. Obviously, the expansion of the outer field might trigger 

the explosion of the already highly stressed inner field, then the outer field enters 

an explosive phase itself. The plasma cloud produced by the first eruption could 

be accelerated outwards by the successive explosion. If the highly pressed outer 

field has stored field energy more than its corresponding open-field energy, it may 

expend to an open-field configuration. A series of islands of magnetized plasma 

may be formed during the explosively expanding process. Since the direction of 

the explosion is outwards, a pair of jet-like radio clouds may be produced. 

It also seems possible that the instability and reconnection may occur first in 

the outer field region. The Figure 15 (c) shows that a magnetic-tail-like structure 

is formed in the outer field region. The pressure from the inner field may produce 

intense current density in this region. Such a situation is susceptible to magnetic 

field reconnection by the tearing-mode instability. 

The mutual interaction between the neighboring fields seems to increase 

the possibility of instability. Any instability occuring in one field may lead to 

a series of instabilities, eruptions, and mass ejections. We propose that such a 

mechanism is a candidate for producing extra-galactic radio jets. Further study 

of this mechanism is under way. 
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c 7. DISCUSSION 

7.1. On the Numerical Method 

c 

From the calculation of two-dimensional force-free magnetic field configura- 

tions, the numerical method presented in the previous chapters is simple in con- 

cept, fairly simple in formulation and operation, and appears to offer a promising 

approach for the calculation of general force-free magnetic field configurations, 

In the early stage, calculations were performed on uniform meshes, on which 

grids have the same size. We have found that there is a great advantage in 

applying a multigrid method in computing force-free magnetic field problems 

subject to given boundary conditions. Generally we start our calculation on an 

initial field configuration, of which the boundary values of Clebsch variables are 

specialized for the astrophysical model concerned. Obviously the initial field 

coniiguraiion so defined couid be very different from the final force-free field 

solution. As the first step in the multigrid method, the computation is performed 

on a coarse-mesh. This offers a rapid convergence of the field configuration 

towards the force-free state. To obtain higher accuracy, further computations 

are performed on a finer mesh, starting from the field configuration derived from 

the coarse mesh computation by interpolation. 

A shortcoming of computing on a uniform mesh is that when the field is 

highly stressed one must calculate the field structure over a very large region, 

due to the tendency of the force-free field to inflate, moving towards an open-field 
% I  
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configuration. To diminish the influence of the external boundaries, one has to 

perform computation on a mesh of large scale size so containing a large number 

of grids. As indicated by the alignment of the current with the field lines, we 

find that the convergence of the field towards the force-free field configuration in 

the weak field region is usually much slower then that in the strong field region 

if we adopt a uniform mesh. This usually require quite long computing time in a 

VAX/750 to obtain results with satisfactory accuracy. To improve our computer 

program, we have adopted the adaptive-grid technique, which we have discussed 

in Chapter 3. By this technique, computation is carried out on a numerical mesh 

with variable grid sizes. The grid size is small in the strong-field region and large 

in the weak-field region. So the total grid number needed for the computation 

will be reduced, and the situation of dealing with difficulty of convergence in the 

weak field region will be improved. 

Experience from practice tells that the most efficient way so far in computing 

large scale force-free magnetic fields is to combine the multigrid method and the 

adaptive-grid technique. 

To simulate real astrophysical magnetic-field configurations, calculation 

must be executed in three-dimensions rather than only two-dimensions as done 

in this work. The experience gained from 2 - D calculation, and techniques such 

as the multigrid and adaptive-grid methods, would be very useful for the 3 - D 

calculations. The success in the 2 - D computation makes us feel confident that 

the extension of the computer program into a 3 - D code will be straightforward. 
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However, 3 - D calculations will require a more powerful computer than the 

VAX/750 that was used far the present calculations. 

We have been also considering other possible developments in numerical 

techniques, which are based on our present work. One is to include the gra- 

dient of the plasma pressure, to extend the numerical program into a code for 

computing general magnetohydros tat ic equilibria. Another consideration is to 

let the field evolve in time, so as to obtain a method of simulating the dynamic 

evolution of a magnetized plasma. As the first step in exploring the possibility of 

these approaches, we need to rewrite the MHD equations in forms expressing the 

magnetic field I? in terms of the Clebsch variables a and p. Such a representation 

has been discussed elsewhere ( Birn and Schindler, 1981 ). 

7.2. On the Astrophysical Applications 

. .... 'PI.-,, ..__ c r ---LI---- r .  
A AAGAG c wu t ~ p ~ w  01 puuiei i iu ivr which one needs the capability of com- 

puting force-free fieids. One of these is the calculation of the field patterns that 

will be produced by certain models of astrophysical systems. Our calculation and 

discussion of the magnetic fields of a rotational sunspot and Keplerian accretion 

disks are examples of such a kind of problem. For this category of problems, 

the specification of the field in terms of the boundary conditions of the Clebsch 

variables is appropriate and convenient. 

For the cases described, the total magnetic field flux is constant when one 

c- 
of the Clebsch variables, say cy, is fixed on the boundary. The evolution of 

*. 
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the magnetic field structures due to twisting or shearing of the footpoints can 

be studied by calculation of the force-free fields with the boundary conditions 

given by fixed values of a and a series of values of another Clebsch variable p 

(or 7). The study of magnetic field configurations by this method will give us 

informations about the increase of total field energy, the current-field structure, 

and the formation of a current-sheet during the twisting or shearing process. As a 
. 

further application of the method, we may study the evolution of magnetic fields 

with the same total flux and under the same situation of twisting or shearing but 

having different distribution of magnteic flux on the photosphere. The purpose 

of this study is to investigate what kinds of field distributions are likely to lead 

to flare occurrences. 

The study of the magnetic field structure of a rotating sunspot has indicted 

that the force-free field energy approaches asympototically the open-field energy 

but does not exceed it. The calculation of the magnetic torque in Chapter 6 

gives further support to this result. A question then arises naturally concerning 

current flare theories. For the occurrence of a solar flare due to the rotation of 

a sunspot, how could the magnetic field configuration go through an open-field 

stage, then release field energy through reconnection ? Alternately, is there a 

physical process that may lead the energy stored in the magnetic field with closed 

field lines to exceed the energy of a corresponding open-field ? 

As indicated by Priest (1981), flares may be caused by the instabilities of 

certain magnetic field configurations, and the reconnection of field lines could 
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start when the magnetic field has in general a configuration with closed field 

lines. The most probable type of instability responsible for flare occurrences is 

known as the ‘tearing mode’ resistive instability. It is obviously a key question to 

solar physicists to determine at what point the force-free field assumption breaks 

down and this dynamic process should be included, when continuing to twist a 

flux tube, or to shear a magnetic arcade. 

c 

Three-dimensional stiidy r?f hce- f ree  magcetic $e!d co&g-;-atioiis will help 

us in understanding some aspects of these challenging problems in flare theory. 

For example, we may calculate the three-dimensional space distribution of cur- 

rent, and determine the local enhancement of currents with the evolution of the 

field configuration. By this method, we may also study the evolution of com- 

plex magnetic field structures, and the mutual interaction among neighboring 

magnetic fields in the active region of the sun, or other astrophysical objects. 

However, tc? find the Sad sc!utims to t h a e  prciblems, it aeeiiis that we neea 3 r  Iar 

more comprehensive studies, inciuding MHD simulations and the plasma simu- 

lations, together with theoretical analysis. 

Another class of problem which needs the numerical calculation of force-free 

fields is that of attempting to model the force-free magnetic field of a solar active 

region, in which case one attempts to find a field pattern that matches certain 

observational data. A vector magnetograph is now in operation at Marshall 

Space Flight Center ( Krall et. al. 1982) that yields the vector magnetic field 

of an active region at the photosphere. In order to compute the corresponding 
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force-free magnetic field configuration by using the magneto-frictional met hod, 

we need to develop an iteration procedure, such as the following. As the first step, 

we assume an initial set of boundary values for the Clebsch variables a and p that 

generate the correct value of the longitudinal magnetic field, and compute the 

corresponding force-free magnetic field, then compare the observed transverse 

component of magnetic field at the photosphere with that which arises in the 

calculation. Based on that comparison, we modify the boundary conditions for 

a and p, and repeat the procedure. 

Comparison of the configuration of the computed force-free field based on 

the observed photospheric magnetic field data with the observed field config- 

uration could give a good test for current theories of solar flares and coronal 

field structures. As pointed out by Krall et. al. (1982), a constant-a, force-free 

magnetic field (f = al?), i.e. a linear force-free magnetic field is ruled out by 

the observations of the photospheric magnetic fields. Therefore the capability of 

computing non-linear force-free magnetic fields of the numerical method devel- 

oped in this work will be useful in the study of solar magnetic fields and active 

phenomena on the sun. 
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